arm

What Do I Need to Know About the Pneumococcal Pneumonia Vaccine?

Author/s: 
Jerard Z. Kneifati-Hayek, Michael A. Incze

What Is the Pneumococcal Pneumonia Vaccine?
The pneumococcal vaccine protects against infections from a type of bacteria called pneumococcus. Pneumococcus is a common cause of pneumonia (a lung infection), as well as other serious infections. The vaccine prepares your immune system to recognize and fight pneumococcal bacteria. The vaccine is usually given through an injection into the arm. Some versions can also be inhaled. The vaccines do not contain living or dead bacteria. The pneumococcal vaccine does not protect you from other lung infections like the flu (influenza), COVID-19, RSV (respiratory syncytial virus), or other kinds of bacteria that cause pneumonia. It is still important to get your flu shot every year and other vaccines your doctor recommends, even if you already got the pneumococcal vaccine.

What Are Benefits of Pneumococcal Pneumonia Vaccines?
The vaccine substantially lowers your risk of hospitalization or dying from serious pneumococcal infection. Vaccination can reduce the risk of pneumonia-related deaths by almost half.

Why Is There a New Pneumococcal Pneumonia Vaccine, and How Does It Differ From Prior Versions?
There are several types of pneumococcal bacteria that can cause pneumonia. Being vaccinated against one type of pneumococcus may not protect you from other types that could make you sick. Previous pneumococcal pneumonia vaccines like PPSV23 or PCV13 do not protect against all types of the pneumococcal bacteria that cause pneumonia. Newer vaccines were made in 2021 (PCV15 and PCV20) and 2024 (PCV21). These help to prevent infections from types of bacteria not covered by older versions.

What Are the Potential Side Effects?
Side effects are frequent but generally mild. The most common side effect is pain or redness at the site of injection. Less common side effects include fever, feeling tired, muscle ache, and headache. These are less severe than for other vaccines like flu and shingles. These effects can be treated with over-the-counter medications and generally go away within 24 to 48 hours. Life-threatening allergic reactions are extremely rare but possible. Seek immediate medical attention if you experience severe symptoms like difficulty breathing or progressive weakness after vaccination. The pneumonia vaccine cannot cause pneumonia or other bacterial illness.

Who Should Get a New Pneumococcal Pneumonia Vaccine?
All adults 50 years and older who have not been vaccinated should receive one of the new vaccines: PCV21, PCV20, or a sequence of PCV15 followed by PPSV23. People younger than 50 years with certain health problems should also get the new vaccine. These health problems include diabetes; chronic conditions affecting the heart, lungs, liver, or kidneys; current tobacco use or heavy alcohol consumption; a weak immune system from certain health problems or medications; absence or prior removal of the spleen; and a history of spinal fluid leak or a cochlear (inner ear) implant.

Most adults who got either PPSV23 and/or PCV13 should still get a booster with one of the newer vaccines. The different pneumococcal vaccines protect against different types of bacteria. Some types of bacteria are more common in people depending on their age, health, and where they live. Talk to your doctor about which vaccine is best for you.

Arm Position and Blood Pressure Readings: The ARMS Crossover Randomized Clinical Trial

Author/s: 
Hairong Liu, Di Zhao, Ahmed Sabit

Importance: Guidelines for blood pressure (BP) measurement recommend arm support on a desk with the midcuff positioned at heart level. Still, nonstandard positions are used in clinical practice (eg, with arm resting on the lap or unsupported on the side).

Objective: To determine the effect of different arm positions on BP readings.

Design, setting, and participants: This crossover randomized clinical trial recruited adults between the ages of 18 and 80 years in Baltimore, Maryland, from August 9, 2022, to June 1, 2023.

Intervention: Participants were randomly assigned to sets of triplicate BP measurements with the arm positioned in 3 ways: (1) supported on a desk (desk 1; reference), (2) hand supported on lap (lap), and (3) arm unsupported at the side (side). To account for intrinsic BP variability, all participants underwent a fourth set of BP measurements with the arm supported on a desk (desk 2).

Main outcomes and measures: The primary outcomes were the difference in differences in mean systolic BP (SBP) and diastolic BP (DBP) between the reference BP (desk 1) and the 2 arm support positions (lap and side): (lap or side - desk 1) - (desk 2 - desk 1). Results were also stratified by hypertensive status, age, obesity status, and access to health care within the past year.

Results: The trial enrolled 133 participants (mean [SD] age, 57 [17] years; 70 [53%] female); 48 participants (36%) had SBP of 130 mm Hg or higher, and 55 participants (41%) had a body mass index (calculated as weight in kilograms divided by height in meters squared) of 30 or higher. Lap and side positions resulted in statistically significant higher BP readings than desk positions, with the difference in differences as follows: lap, SBP Δ 3.9 (95% CI, 2.5-5.2) mm Hg and DBP Δ 4.0 (95% CI, 3.1-5.0) mm Hg; and side, SBP Δ 6.5 (95% CI, 5.1-7.9) mm Hg and DBP Δ 4.4 (95% CI, 3.4-5.4) mm Hg. The patterns were generally consistent across subgroups.

Conclusion and relevance: This crossover randomized clinical trial showed that commonly used arm positions (lap or side) resulted in substantial overestimation of BP readings and may lead to misdiagnosis and overestimation of hypertension.

Extended follow-up of local steroid injection for carpal tunnel syndrome: A randomized clinical trial

Author/s: 
Hofer, M., Ranstam, J., Atroshi, I.

Importance Local steroid injection is commonly used in treating patients with idiopathic carpal tunnel syndrome, but evidence regarding long-term efficacy is lacking.

Objective To assess the long-term treatment effects of local steroid injection for carpal tunnel syndrome.

Design, Setting, and Participants This exploratory 5-year extended follow-up of a double-blind, placebo-controlled randomized clinical trial was conducted from November 2008 to March 2012 at a university hospital orthopedic department. Participants included patients aged 22 to 69 years with primary idiopathic carpal tunnel syndrome and no prior treatment with local steroid injections. Data were analyzed from May 2018 to August 2018.

Interventions Patients were randomized to injection of 80 mg methylprednisolone, 40 mg methylprednisolone, or saline.

Main Outcomes and Measures The coprimary outcomes were the symptom severity score and rate of subsequent carpal tunnel release surgery on the study hand at 5 years. Secondary outcomes were time from injection to surgical treatment, SF-36 bodily pain score, and score on the 11-item disabilities of the arm, shoulder, and hand scale.

Results A total of 111 participants (mean [SD] age at follow-up, 52.9 [11.6] years; 81 [73.0%] women and 30 [27.0%] men) were randomized, with 37 in the 80 mg methylprednisolone group, 37 in the 40 mg methylprednisolone group, and 37 in the saline placebo group. Complete 5-year follow-up data were obtained from all 111 participants with no dropouts (100% follow-up). At baseline, mean (SD) symptom severity scores were 2.93 (0.85) in the 80 mg methylprednisolone group, 3.13 (0.70) in the 40 mg methylprednisolone group, and 3.18 (0.75) in the placebo group, and at the 5-year follow up, mean (SD) symptom severity scores were 1.51 (0.66) in the 80 mg methylprednisolone group, 1.59 (0.63) in the 40 mg methylprednisolone group, and 1.67 (0.74) in the placebo group. Compared with placebo, there was no significant difference in mean change in symptom severity score from baseline to 5 years for the 80 mg methylprednisolone group (0.14 [95%CI, −0.17 to 0.45]) or the 40 mg methylprednisolone group (0.12 [95%CI, −0.19 to 0.43]). After injection, subsequent surgical treatment on the study hand was performed in 31 participants (83.8%) in the 80 mg methylprednisolone group, 34 participants (91.9%) in the 40 mg methylprednisolone group, and 36 participants (97.3%) in the placebo group; the number of participants who underwent surgical treatment between the 1-year and 5-year follow-ups was 4 participants (10.8%) in the 80 mg methylprednisolone group, 4 participants (10.8%) in the 40 mg methylprednisolone group, and 2 participants (5.4%) in the placebo group. All surgical procedures were conducted while participants and investigators were blinded to type of injection received. The mean (SD) time from injection to surgery was 180 (121) days in the 80 mg methylprednisolone group, 185 (125) days in the 40 mg methylprednisolone group, and 121 (88) days in the placebo group. Kaplan-Meier survival curves showed statistically significant difference in time to surgical treatment (log-rank test: 80 mg methylprednisolone vs placebo, P = .002 ; 40 mg methylprednisolone vs placebo, P = .02; methylprednisolone 80 mg vs 40 mg, P = .37).

Conclusions and Relevance These findings suggest that in idiopathic carpal tunnel syndrome, local methylprednisolone injection resulted in statistically significant reduction in surgery rates and delay in need for surgery.

Trial Registration ClinicalTrials.gov Identifiers: NCT00806871 and NCT02652390

Subscribe to arm