children

Glucocorticoids for croup in children

Author/s: 
Gates, A, Gates, M, Vandermeer, B, Johnson, C, Hartling, L, Johnson, DW, Klassen, TP

BACKGROUND:

Glucocorticoids are commonly used for croup in children. This is an update of a Cochrane Review published in 1999 and previously updated in 2004 and 2011.

OBJECTIVES:

To examine the effects of glucocorticoids for the treatment of croup in children aged 0 to 18 years.

SEARCH METHODS:

We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, Issue 2, 2018), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register, Ovid MEDLINE Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Ovid MEDLINE (1946 to 3 April 2018), and Embase (Ovid) (1996 to 3 April 2018, week 14), and the trials registers ClinicalTrials.gov (3 April 2018) and the World Health Organization International Clinical Trials Registry Platform (ICTRP, 3 April 2018). We scanned the reference lists of relevant systematic reviews and of the included studies.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) that investigated children aged 0 to 18 years with croup and measured the effects of glucocorticoids, alone or in combination, compared to placebo or another pharmacologic treatment. The studies needed to report at least one of our primary or secondary outcomes: change in croup score; return visits, (re)admissions or both; length of stay; patient improvement; use of additional treatments; and adverse events.

DATA COLLECTION AND ANALYSIS:

One author extracted data from each study and another verified the extraction. We entered the data into Review Manager 5 for meta-analysis. Two review authors independently assessed risk of bias for each study using the Cochrane 'Risk of bias' tool and the certainty of the body of evidence for the primary outcomes using the GRADE approach.

MAIN RESULTS:

We added five new RCTs with 330 children. This review now includes 43 RCTs with a total of 4565 children. We assessed most (98%) studies as at high or unclear risk of bias. Compared to placebo, glucocorticoids improved symptoms of croup at two hours (standardised mean difference (SMD) -0.65, 95% confidence interval (CI) -1.13 to -0.18; 7 RCTs; 426 children; moderate-certainty evidence), and the effect lasted for at least 24 hours (SMD -0.86, 95% CI -1.40 to -0.31; 8 RCTs; 351 children; low-certainty evidence). Compared to placebo, glucocorticoids reduced the rate of return visits or (re)admissions or both (risk ratio 0.52, 95% CI 0.36 to 0.75; 10 RCTs; 1679 children; moderate-certainty evidence). Glucocorticoid treatment reduced the length of stay in hospital by about 15 hours (mean difference -14.90, 95% CI -23.58 to -6.22; 8 RCTs; 476 children). Serious adverse events were infrequent. Publication bias was not evident. Uncertainty remains with regard to the optimal type, dose, and mode of administration of glucocorticoids for reducing croup symptoms in children.

AUTHORS' CONCLUSIONS:

Glucocorticoids reduced symptoms of croup at two hours, shortened hospital stays, and reduced the rate of return visits to care. Our conclusions have changed, as the previous version of this review reported that glucocorticoids reduced symptoms of croup within six hours.

Grommets (ventilation tubes) for recurrent acute otitis media in children

Author/s: 
A.G., Mick, P., Venekamp, R.P.

BACKGROUND:

Acute otitis media (AOM) is one of the most common childhood illnesses. While many children experience sporadic AOM episodes, an important group suffer from recurrent AOM (rAOM), defined as three or more episodes in six months, or four or more in one year. In this subset of children AOM poses a true burden through frequent episodes of ear pain, general illness, sleepless nights and time lost from nursery or school. Grommets, also called ventilation or tympanostomy tubes, can be offered for rAOM.

OBJECTIVES:

To assess the benefits and harms of bilateral grommet insertion with or without concurrent adenoidectomy in children with rAOM.

SEARCH METHODS:

The Cochrane ENT Information Specialist searched the Cochrane ENT Trials Register; CENTRAL; MEDLINE; EMBASE; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 4 December 2017.

SELECTION CRITERIA:

Randomised controlled trials (RCTs) comparing bilateral grommet insertion with or without concurrent adenoidectomy and no ear surgery in children up to age 16 years with rAOM. We planned to apply two main scenarios: grommets as a single surgical intervention and grommets as concurrent treatment with adenoidectomy (i.e. children in both the intervention and comparator groups underwent adenoidectomy). The comparators included active monitoring, antibiotic prophylaxis and placebo medication.

DATA COLLECTION AND ANALYSIS:

We used the standard methodological procedures expected by Cochrane. Primary outcomes were: proportion of children who have no AOM recurrences at three to six months follow-up (intermediate-term) and persistent tympanic membrane perforation (significant adverse event). Secondary outcomes were: proportion of children who have no AOM recurrences at six to 12 months follow-up (long-term); total number of AOM recurrences, disease-specific and generic health-related quality of life, presence of middle ear effusion and other adverse events at short-term, intermediate-term and long-term follow-up. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics.

MAIN RESULTS:

Five RCTs (805 children) with unclear or high risk of bias were included. All studies were conducted prior to the introduction of pneumococcal vaccination in the countries' national immunisation programmes. In none of the trials was adenoidectomy performed concurrently in both groups.Grommets versus active monitoringGrommets were more effective than active monitoring in terms of:- proportion of children who had no AOM recurrence at six months (one study, 95 children, 46% versus 5%; risk ratio (RR) 9.49, 95% confidence interval (CI) 2.38 to 37.80, number needed to treat to benefit (NNTB) 3; low-quality evidence);- proportion of children who had no AOM recurrence at 12 months (one study, 200 children, 48% versus 34%; RR 1.41, 95% CI 1.00 to 1.99, NNTB 8; low-quality evidence);- number of AOM recurrences at six months (one study, 95 children, mean number of AOM recurrences per child: 0.67 versus 2.17, mean difference (MD) -1.50, 95% CI -1.99 to -1.01; low-quality evidence);- number of AOM recurrences at 12 months (one study, 200 children, one-year AOM incidence rate: 1.15 versus 1.70, incidence rate difference -0.55, 95% -0.17 to -0.93; low-quality evidence).Children receiving grommets did not have better disease-specific health-related quality of life (Otitis Media-6 questionnaire) at four (one study, 85 children) or 12 months (one study, 81 children) than those managed by active monitoring (low-quality evidence).One study reported no persistent tympanic membrane perforations among 54 children receiving grommets (low-quality evidence).Grommets versus antibiotic prophylaxisIt is uncertain whether or not grommets are more effective than antibiotic prophylaxis in terms of:- proportion of children who had no AOM recurrence at six months (two studies, 96 children, 60% versus 35%; RR 1.68, 95% CI 1.07 to 2.65, I2 = 0%, fixed-effect model, NNTB 5; very low-quality evidence);- number of AOM recurrences at six months (one study, 43 children, mean number of AOM recurrences per child: 0.86 versus 1.38, MD -0.52, 95% CI -1.37 to 0.33; very low-quality evidence).Grommets versus placebo medicationGrommets were more effective than placebo medication in terms of:- proportion of children who had no AOM recurrence at six months (one study, 42 children, 55% versus 15%; RR 3.64, 95% CI 1.20 to 11.04, NNTB 3; very low-quality evidence);- number of AOM recurrences at six months (one study, 42 children, mean number of AOM recurrences per child: 0.86 versus 2.0, MD -1.14, 95% CI -2.06 to -0.22; very low-quality evidence).One study reported persistent tympanic membrane perforations in 3 of 76 children (4%) receiving grommets (low-quality evidence).Subgroup analysisThere were insufficient data to determine whether presence of middle ear effusion at randomisation, type of grommet or age modified the effectiveness of grommets.

AUTHORS' CONCLUSIONS:

Current evidence on the effectiveness of grommets in children with rAOM is limited to five RCTs with unclear or high risk of bias, which were conducted prior to the introduction of pneumococcal vaccination. Low to very low-quality evidence suggests that children receiving grommets are less likely to have AOM recurrences compared to those managed by active monitoring and placebo medication, but the magnitude of the effect is modest with around one fewer episode at six months and a less noticeable effect by 12 months. The low to very low quality of the evidence means that these numbers need to be interpreted with caution since the true effects may be substantially different. It is uncertain whether or not grommets are more effective than antibiotic prophylaxis. The risk of persistent tympanic membrane perforation after grommet insertion was low.Widespread use of pneumococcal vaccination has changed the bacteriology and epidemiology of AOM, and how this might impact the results of prior trials is unknown. New and high-quality RCTs of grommet insertion in children with rAOM are therefore needed. These trials should not only focus on the frequency of AOM recurrences, but also collect data on the severity of AOM episodes, antibiotic consumption and adverse effects of both surgery and antibiotics. This is particularly important since grommets may reduce the severity of AOM recurrences and allow for topical rather than oral antibiotic treatment.

Adverse Childhood Experience (ACE) Questionnaire and Resource Packet

What is the role of healthcare providers?
The healthcare system is a natural place to respond to ACEs and promote resilience in children,
youth and families. Guidelines for well childcare are extensive in the early years – 13 visits in
the first three years of lifei --, which is a crucial period of child development. Health systems,
and in particular pediatric providers, are in a unique position to identify issues for both children
and their families that contribute to either promoting or inhibiting healthy development. The
American Association of Pediatrics (AAP) issued a policy statement in 2012 that encourages,
among other things, pediatricians to take a more proactive role in educating patients and
families about the impact of toxic stress and in advocating for the development of interventions
that mitigate its impact. ii

What is trauma-informed care?
Trauma-informed care encompasses three levels of focus from a systems level: addressing
policy and procedures, creating approaches for organizing and delivering services and providing
specific programs or interventions for families.

The federal agency Substance Abuse and Mental Health Services Administration (SAMHSA) has
outlined six principles for trauma informed care: (1) creating a culture of physical and
psychological safety for staff and the people they serve; (2) building and maintaining
trustworthiness and transparency among staff, clients and others involved with the
organization; (3) utilizing peer support to promote healing and recovery; (4) leveling the power
differences between staff and clients and among staff to foster collaboration and mutuality; (5)
cultivating a culture of empowerment, voice and choice that recognizes individual strengths,
resilience and an ability to heal from past trauma; and (6) recognizing and responding to the
cultural, historical and gender roots of trauma.

Subscribe to children