blood pressure

Cardiovascular Events and Mortality in White Coat Hypertension: A Systematic Review and Meta-analysis

Author/s: 
M.G., Cohen, J.B., Lotito, M.J., Denker, M.G., Cohen, D.L., Townsend, R.R.

BACKGROUND:

The long-term cardiovascular risk of isolated elevated office blood pressure (BP) is unclear.

PURPOSE:

To summarize the risk for cardiovascular events and all-cause mortality associated with untreated white coat hypertension (WCH) and treated white coat effect (WCE).

DATA SOURCES:

PubMed and EMBASE, without language restriction, from inception to December 2018.

STUDY SELECTION:

Observational studies with at least 3 years of follow-up evaluating the cardiovascular risk of WCH or WCE compared with normotension.

DATA EXTRACTION:

2 investigators independently extracted study data and assessed study quality.

DATA SYNTHESIS:

27 studies were included, comprising 25 786 participants with untreated WCH or treated WCE and 38 487 with normal BP followed for a mean of 3 to 19 years. Compared with normotension, untreated WCH was associated with an increased risk for cardiovascular events (hazard ratio [HR], 1.36 [95% CI, 1.03 to 2.00]), all-cause mortality (HR, 1.33 [CI, 1.07 to 1.67]), and cardiovascularmortality (HR, 2.09 [CI, 1.23 to 4.48]); the risk of WCH was attenuated in studies that included stroke in the definition of cardiovascular events(HR, 1.26 [CI, 1.00 to 1.54]). No significant association was found between treated WCE and cardiovascular events (HR, 1.12 [CI, 0.91 to 1.39]), all-cause mortality (HR, 1.11 [CI, 0.89 to 1.46]), or cardiovascular mortality (HR, 1.04 [CI, 0.65 to 1.66]). The findings persisted across several sensitivity analyses.

LIMITATION:

Paucity of studies evaluating isolated cardiac outcomes or reporting participant race/ethnicity.

CONCLUSION:

Untreated WCH, but not treated WCE, is associated with an increased risk for cardiovascular events and all-cause mortality. Out-of-office BP monitoring is critical in the diagnosis and management of hypertension.

PRIMARY FUNDING SOURCE:

National Institutes of Health.

Impact of High Volume Energy Drink Consumption on Electrocardiographic and Blood Pressure Parameters: A Randomized Trial

Author/s: 
Kaul, Sanjay, Shah, S.A., Szeto, A.H., Farewell, Raechel, Shek, Allen, Fan, Dorothy, Quach, K.N., Bhattacharyya, Mouchumi, Elmiari, Jasmine, Chan, Winny, O'Dell, Kate, Nguyen, Nancy, McGaughey, T.J., Nasir, J.M.

Abstract

Background

Energy drinks have been linked to an increase in emergency room visits and deaths. We aim to determine the impact of energy drinks on electrocardiographic and hemodynamic parameters in young healthy volunteers.

Methods and Results

A randomized, double‐masked, placebo‐controlled, crossover study was conducted in healthy volunteers. Participants consumed 32 oz of either energy drink A, energy drink B, or placebo within 60 minutes on 3 study days with a 6‐day washout period in between. The primary end point of QTc interval and secondary end points of QT interval, PR interval, QRS duration, heart rate, and brachial and central blood pressures were measured at baseline, and every 30 minutes for 240 minutes. A repeated‐measures 2‐way analysis of variance was performed with the main effects of intervention, time, and an interaction of intervention and time. Thirty‐four participants were included (age 22.1±3.0 years). The interaction term of intervention and time was statistically significant for Bazett's corrected QT interval, Fridericia's corrected QT interval, QT, PR, QRS duration, heart rate, systolic blood pressure, diastolic blood pressure, central systolic blood pressure, and central diastolic blood pressure (all P<0.001). The maximum change from baseline in Bazett's corrected QT interval for drinks A, B, and placebo were +17.9±13.9, +19.6±15.8, and +11.9±11.1 ms, respectively (P=0.005 for ANOVA) (P=0.04 and <0.01, respectively compared with placebo). Peripheral and central systolic and diastolic blood pressure were statistically significantly different compared with placebo (all P<0.001).

Conclusion

Energy drinks significantly prolong the QTc interval and raise blood pressure.

Yoga as Antihypertensive Lifestyle Therapy: A Systematic Review and Meta-analysis

Author/s: 
Wu, Yin, Johnson, Blair T., Acabchuk, Rebecca L., Chen, Shiqi, Lewis, Holly K., Livingston, Jill, Park, Crystal L., Pescatello, Linda S.

OBJECTIVE:

To investigate the efficacy of yoga as antihypertensive lifestyle therapy and identify moderators that account for variability in the blood pressure (BP) response to yoga.

METHODS:

We systematically searched 6 electronic databases from inception through June 4, 2018, for articles published in English language journals on trials of yoga interventions that involved adult participants, reported preintervention and postintervention BP, and had a nonexercise/nondiet control group. Our search yielded 49 qualifying controlled trials (56 interventions). We (1) evaluated the risk of bias and methodological study quality, (2) performed meta-regression analysis following random-effects assumptions, and (3) generated additive models that represented the largest possible clinically relevant BP reductions.

RESULTS:

On average, the 3517 trial participants were middle-aged (49.2±19.5 years), overweight (27.9±3.6 kg/m2) adults with high BP (systolic BP, 129.3±13.3 mm Hg; diastolic BP, 80.7±8.4 mm Hg). Yoga was practiced 4.8±3.4 sessions per week for 59.2±25.0 minutes per session for 13.2±7.5 weeks. On average, yoga elicited moderate reductions in systolic BP (weighted mean effect size, -0.47; 95% CI, -0.62-0.32, -5.0 mm Hg) and diastolic BP (weighted mean effect size, -0.47; 95% CI, -0.61 to -0.32; -3.9 mm Hg) compared with controls (P<.001 for both systolic BP and diastolic BP). Controlling for publication bias and methodological study quality, when yoga was practiced 3 sessions per week among samples with hypertension, yoga interventions that included breathing techniques and meditation/mental relaxation elicited BP reductions of 11/6 mm Hg compared with those that did not (ie, 6/3 mm Hg).

CONCLUSION:

Our results indicate that yoga is a viable antihypertensive lifestyle therapy that produces the greatest BP benefits when breathing techniques and meditation/mental relaxation are included.

A Randomized Trial of Intensive versus Standard Blood-Pressure Control

Author/s: 
The SPRINT Research Group

BACKGROUND

The most appropriate targets for systolic blood pressure to reduce cardiovascular morbidity and mortality among persons without diabetes remain uncertain.

METHODS

We randomly assigned 9361 persons with a systolic blood pressure of 130 mm Hg or higher and an increased cardiovascular risk, but without diabetes, to a systolic blood-pressure target of less than 120 mm Hg (intensive treatment) or a target of less than 140 mm Hg (standard treatment). The primary composite outcome was myocardial infarction, other acute coronary syndromes, stroke, heart failure, or death from cardiovascular causes.

RESULTS

At 1 year, the mean systolic blood pressure was 121.4 mm Hg in the intensive-treatment group and 136.2 mm Hg in the standard-treatment group. The intervention was stopped early after a median follow-up of 3.26 years owing to a significantly lower rate of the primary composite outcome in the intensive-treatment group than in the standard-treatment group (1.65% per year vs. 2.19% per year; hazard ratio with intensive treatment, 0.75; 95% confidence interval [CI], 0.64 to 0.89; P<0.001). All-cause mortality was also significantly lower in the intensive-treatment group (hazard ratio, 0.73; 95% CI, 0.60 to 0.90; P=0.003). Rates of serious adverse events of hypotension, syncope, electrolyte abnormalities, and acute kidney injury or failure, but not of injurious falls, were higher in the intensive-treatment group than in the standard-treatment group.

CONCLUSIONS

Among patients at high risk for cardiovascular events but without diabetes, targeting a systolic blood pressure of less than 120 mm Hg, as compared with less than 140 mm Hg, resulted in lower rates of fatal and nonfatal major cardiovascular events and death from any cause, although significantly higher rates of some adverse events were observed in the intensive-treatment group. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT01206062.)

Comparing Automated Office Blood Pressure Readings With Other Methods of Blood Pressure Measurement for Identifying Patients With Possible Hypertension: A Systematic Review and Meta-analysis

Author/s: 
Roerecke, Michael, Kaczorowski, Janusz, Myers, Martin G.

IMPORTANCE:

Automated office blood pressure (AOBP) measurement involves recording several blood pressure (BP) readings using a fully automated oscillometric sphygmomanometer with the patient resting alone in a quiet place. Although several studies have shown AOBP measurement to be more accurate than routine office BP measurement and not subject to a "white coat effect," the cumulative evidence has not yet been systematically reviewed.

OBJECTIVE:

To perform a systematic review and meta-analysis to examine the association between AOBP and office BP readings measured in routine clinical practice and in research studies, and ambulatory BP recorded during awake hours, as the latter is a standard for predicting future cardiovascular events.

DATA SOURCES:

The MEDLINE, Embase, and Cochrane Library were searched from 2003 to April 25, 2018.

STUDY SELECTION:

Studies on systolic and diastolic BP measurement by AOBP in comparison with awake ambulatory BP, routine office BP, and research BP measurements were included if they contained 30 patients or more.

DATA EXTRACTION AND SYNTHESIS:

Study characteristics were abstracted independently and random effects meta-analyses and meta-regressions were conducted.

MAIN OUTCOMES AND MEASURES:

Pooled mean differences (95% CI) of systolic and diastolic BP between types of BP measurement.

RESULTS:

Data were compiled from 31 articles comprising 9279 participants (4736 men and 4543 women). In samples with systolic AOBP of 130 mm Hg or more, routine office and research systolic BP readings were substantially higher than AOBP readings, with a pooled mean difference of 14.5 mm Hg (95% CI, 11.8-17.2 mm Hg; n = 9; I2 = 94.3%; P < .001) for routine office systolic BP readings and 7.0 mm Hg (95% CI, 4.9-9.1 mm Hg; n = 9; I2 = 85.7%; P < .001) for research systolic BP readings. Systolic awake ambulatory BP and AOBP readings were similar, with a pooled mean difference of 0.3 mm Hg (95% CI, -1.1 to 1.7 mm Hg; n = 19; I2 = 90%; P < .001).

CONCLUSIONS AND RELEVANCE:

Automated office blood pressure readings, only when recorded properly with the patient sitting alone in a quiet place, are more accurate than office BP readings in routine clinical practice and are similar to awake ambulatory BP readings, with mean AOBP being devoid of any white coat effect. There has been some reluctance among physicians to adopt this technique because of uncertainty about its advantages compared with more traditional methods of recording BP during an office visit. Based on the evidence, AOBP should now be the preferred method for recording BP in routine clinical practice.

Keywords 

Prediction of individual life-years gained without cardiovascular events from lipid, blood pressure, glucose, and aspirin treatment based on data of more than 500 000 patients with Type 2 diabetes mellitus

Author/s: 
Berkelmans, Gijs F N, Gudbjörnsdottir, Soffia, Visseren, Frank L J, Wild, Sarah H, Franzen, Stefan, Chalmers, John, Davis, Barry R, Poulter, Neil R, Spijkerman, Annemieke M, Woodward, Mark, Pressel, Sara L, Gupta, Ajay K, van der Schouw, Yvonne T, Svensson, Ann-Marie

AIMS:

Although group-level effectiveness of lipid, blood pressure, glucose, and aspirin treatment for prevention of cardiovascular disease (CVD) has been proven by trials, important differences in absolute effectiveness exist between individuals. We aim to develop and validate a prediction tool for individualizing lifelong CVD prevention in people with Type 2 diabetes mellitus (T2DM) predicting life-years gained without myocardial infarction or stroke.

METHODS AND RESULTS:

We developed and validated the Diabetes Lifetime-perspective prediction (DIAL) model, consisting of two complementary competing risk adjusted Cox proportional hazards functions using data from people with T2DM registered in the Swedish National Diabetes Registry (n = 389 366). Competing outcomes were (i) CVD events (vascular mortality, myocardial infarction, or stroke) and (ii) non-vascular mortality. Predictors were age, sex, smoking, systolic blood pressure, body mass index, haemoglobin A1c, estimated glomerular filtration rate, non- high-density lipoprotein cholesterol, albuminuria, T2DM duration, insulin treatment, and history of CVD. External validation was performed using data from the ADVANCE, ACCORD, ASCOT and ALLHAT-LLT-trials, the SMART and EPIC-NL cohorts, and the Scottish diabetes register (total n = 197 785). Predicted and observed CVD-free survival showed good agreement in all validation sets. C-statistics for prediction of CVD were 0.83 (95% confidence interval: 0.83-0.84) and 0.64-0.65 for internal and external validation, respectively. We provide an interactive calculator at www.U-Prevent.com that combines model predictions with relative treatment effects from trials to predict individual benefit from preventive treatment.

CONCLUSION:

Cardiovascular disease-free life expectancy and effects of lifelong prevention in terms of CVD-free life-years gained can be estimated for people with T2DM using readily available clinical characteristics. Predictions of individual-level treatment effects facilitate translation of trial results to individual patients.

Omega-6 fats for the primary and secondary prevention of cardiovascular disease

Author/s: 
Hooper, Lee, Al-Khudairy, Lena, Abdelhamid, Asmaa S., Rees, Karen, Brainard, Julii S., Brown, Tracey J., Ajabnoor, Sarah M., O'Brien, Alex T., Winstanley, Lauren E., Donaldson, Daisy H., Song, Fujian, Deane, Katherine H. O.

BACKGROUND:

Omega-6 fats are polyunsaturated fats vital for many physiological functions, but their effect on cardiovascular disease (CVD) risk is debated.

OBJECTIVES:

To assess effects of increasing omega-6 fats (linoleic acid (LA), gamma-linolenic acid (GLA), dihomo-gamma-linolenic acid (DGLA) and arachidonic acid (AA)) on CVD and all-cause mortality.

SEARCH METHODS:

We searched CENTRAL, MEDLINE and Embase to May 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews.

SELECTION CRITERIA:

We included randomised controlled trials (RCTs) comparing higher versus lower omega-6 fat intake in adults with or without CVD, assessing effects over at least 12 months. We included full texts, abstracts, trials registry entries and unpublished studies. Outcomes were all-cause mortality, CVD mortality, CVD events, risk factors (blood lipids, adiposity, blood pressure), and potential adverse events. We excluded trials where we could not separate omega-6 fat effects from those of other dietary, lifestyle or medication interventions.

DATA COLLECTION AND ANALYSIS:

Two authors independently screened titles/abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias of included trials. We wrote to authors of included studies. Meta-analyses used random-effects analysis, while sensitivity analyses used fixed-effects and limited analyses to trials at low summary risk of bias. We assessed GRADE quality of evidence for 'Summary of findings' tables.

MAIN RESULTS:

We included 19 RCTs in 6461 participants who were followed for one to eight years. Seven trials assessed the effects of supplemental GLA and 12 of LA, none DGLA or AA; the omega-6 fats usually displaced dietary saturated or monounsaturated fats. We assessed three RCTs as being at low summary risk of bias.Primary outcomes: we found low-quality evidence that increased intake of omega-6 fats may make little or no difference to all-cause mortality (risk ratio (RR) 1.00, 95% confidence interval (CI) 0.88 to 1.12, 740 deaths, 4506 randomised, 10 trials) or CVD events (RR 0.97, 95% CI 0.81 to 1.15, 1404 people experienced events of 4962 randomised, 7 trials). We are uncertain whether increasing omega-6 fats affects CVD mortality (RR 1.09, 95% CI 0.76 to 1.55, 472 deaths, 4019 randomised, 7 trials), coronary heart disease events (RR 0.88, 95% CI 0.66 to 1.17, 1059 people with events of 3997 randomised, 7 trials), major adverse cardiac and cerebrovascular events (RR 0.84, 95% CI 0.59 to 1.20, 817 events, 2879 participants, 2 trials) or stroke (RR 1.36, 95% CI 0.45 to 4.11, 54 events, 3730 participants, 4 trials), as we assessed the evidence as being of very low quality. We found no evidence of dose-response or duration effects for any primary outcome, but there was a suggestion of greater protection in participants with lower baseline omega-6 intake across outcomes.Additional key outcomes: we found increased intake of omega-6 fats may reduce myocardial infarction (MI) risk (RR 0.88, 95% CI 0.76 to 1.02, 609 events, 4606 participants, 7 trials, low-quality evidence). High-quality evidence suggests increasing omega-6 fats reduces total serum cholesterol a little in the long term (mean difference (MD) -0.33 mmol/L, 95% CI -0.50 to -0.16, I2 = 81%; heterogeneity partially explained by dose, 4280 participants, 10 trials). Increasing omega-6 fats probably has little or no effect on adiposity (body mass index (BMI) MD -0.20 kg/m2, 95% CI -0.56 to 0.16, 371 participants, 1 trial, moderate-quality evidence). It may make little or no difference to serum triglycerides (MD -0.01 mmol/L, 95% CI -0.23 to 0.21, 834 participants, 5 trials), HDL (MD -0.01 mmol/L, 95% CI -0.03 to 0.02, 1995 participants, 4 trials) or low-density lipoprotein (MD -0.04 mmol/L, 95% CI -0.21 to 0.14, 244 participants, 2 trials, low-quality evidence).

AUTHORS' CONCLUSIONS:

This is the most extensive systematic assessment of effects of omega-6 fats on cardiovascular health, mortality, lipids and adiposity to date, using previously unpublished data. We found no evidence that increasing omega-6 fats reduces cardiovascular outcomes other than MI, where 53 people may need to increase omega-6 fat intake to prevent 1 person from experiencing MI. Although benefits of omega-6 fats remain to be proven, increasing omega-6 fats may be of benefit in people at high risk of MI. Increased omega-6 fats reduce serum total cholesterol but not other blood fat fractions or adiposity.

Subscribe to blood pressure